ELECTRON MICROPROBE ANALYSIS OF MOLDING MASSES OF CERAMICS FROM MONUMENTS OF THE FAR EAST*
The article discusses the problems of using the methods of natural sciences in archaeological research, including the study of ceramic complexes. The possibilities of electron microprobe analysis (EPA) are shown on the example of studying clay products from monuments of different epochs of the Russian Far East, Sakhalin, and the Japanese Islands. Three - dimensional diagrams showing the percentages of the main chemical elements that make up the molding masses of ceramics (Ca - K - SiO2, K - Ca - Na, Mg - Fe-Ti) are analyzed. An original technique of a computer method for quantitative assessment of sand grains and image processing using special software is proposed. The positive and negative aspects of ERMA are shown, and some methodological guidelines for using its results for studying feldspars in molding masses of ancient ceramics are given.
Key words: ceramics, molding masses, Neolithic, Early Middle Ages, Amur region, electron microprobe analysis.
Methods and sources
The use of natural science methods for the reconstruction of pottery technology of different periods of history in Russia began around the middle of the XX century and is still being developed [Sayko, 1960, 1971, 1982; Krug, 1963, 1965; Grazhdankina, 1965; Zhushchikhovskaya and Zalishchak, 1986; Sayko and Zhushchikhovskaya, 1990; et al.; Lamina, Lotova and Dobretsov, 1995; Glushkov, 1996; Mylnikova, 1999; Grebenshchikov and Derevyanko E. I., 2001; Zhushchikhovskaya, 2004]. But, as at the beginning of its development, this direction is experiencing serious difficulties due to the lack of relevant subjects in the system of training archaeologists in universities and, as a result, professional specialists, as well as methods of conducting analyses and deciphering results adapted to the archaeological source.
The set of natural science methods used by archaeologists to obtain information about ceramics is quite large. You can group them by their purpose:
1) optical, scanning electron and atomic force microscopy provide information about the texture of the material;
2) chemical analysis in the traditional version ("wet chemistry"), X-ray fluorescence, atomic absorption spectroscopy and neutron activation allow you to determine the chemical composition;
3) X-ray phase analysis identifies all crystal phases present in the ceramic mass;
4) petrographic analysis makes it possible to determine the quantitative and qualitative ratio of the components of the molding mass;
5) thermal methods allow us to obtain information about changes in the properties of ceramics with temperature changes (thermoluminescence - about the energy stored in defects in the crystal structure; dilatometry and thermogravimetry - about changes in the properties of ceramics with temperature changes).-
* The work was carried out within the framework of the project "Adaptation processes in the population of the western part of the Amur basin during the Holocene", with financial support from the Russian Foundation for Natural Sciences (project N 06 - 01 - 00436a), the Russian Foundation for Basic Research (project N 06 - 06 - 80468a).
changes, respectively, in the linear dimensions and mass of the sample; differential thermal analysis - on thermal processes in the ceramic mass during heating, etc.) [Drebushchak V. A., Mylnikova, Drebushchak T. N. et al., 2006].
It is believed that the molding masses of ceramic products fired in the simplest devices at a temperature insufficient for melting the constituent substances inherit a number of features of the geological characteristics of clay deposits and additives to them. First of all, this applies to feldspar sand, which can be found in the sample as a component of the clay substance and as an additive to the molding mass. Recall that the composition of most feldspars is determined by the ratio of the components of the triple system Na [AlSi3O8] - K [AlSi3O8] - Ca [Al2si2o8]. There are two series of minerals: 1) alkaline - isomorphic mixtures of K [AlSi3O8] and Na [AlSi3O8]; 2) plagioclases - isomorphic mixtures of Na [AlSi3O8] and Ca [Al2si2o8]. Feldspars are the most important classification minerals. They are present in most igneous rocks. In addition, rocks of various chemical types are characterized by the presence of plagioclases of a more or less definite composition (Belousova and Mikhina, 1972, p. 87, 119). This property of feldspars allows them to be used to characterize the molding masses of ceramic materials.
The study of sand in molding masses and the identification of its nature (additive, natural origin) in ceramic samples using a polarizing microscope require many years of training and experience, and mistakes are not excluded (Bobrinsky, 1978; Glushkov, 1996). Electron microprobe analysis (EPA - Electron probe X-ray micro analyzer) provides quantitative and qualitative characteristics of chemical elements obtained by machine processing of the results. The principle of operation of the microprobe is as follows: a stream of electrons is generated, which is collected by electromagnetic lenses in a narrow beam - an electron probe. Once in the sample, these electrons knock out electrons from the shells of the atoms of the substance and cause X-rays. Each element emits at its own specific frequency range, which can be used to identify it. The concentrations of elements are determined by the radiation intensity [Methodology...].
ERMA is a method of non-destructive elemental analysis of micron-sized particles on the surface of a material with sensitivity up to the millionth part. The results of a standard quantitative assessment with reproducibility up to 1 % are determined within a few days. This is the most accurate method of microanalysis to date; it can be used to study all elements from beryllium to uranium. ERMA with easy and direct interpretation of results is fully compatible with standard analyses. ERMA instruments are equipped with sophisticated optics with a full set of built-in microscopes (from x40 to x400), providing simultaneous X-ray spectra (WDS and EDS), SEM and BSE images. This method makes it possible to determine the thickness and elemental composition of layers from 1 nm to 1 mm in a multilayer material. Computer processing of the results of microprobe analysis allows you to translate them into specific numbers and ultimately determine the concentration of grains of sand of a certain dimension. The availability of such information about the chemical elements that make up the sand makes it possible to determine the qualitative and quantitative characteristics of the components of the molding masses and, perhaps, in the future, when databases are created for individual regions, it will allow identifying the places where ceramics are made.
The beginning of such research of Far Eastern ceramic materials was laid by employees of the State Polytechnic College in Hakodate (Japan). In 2005, at the request of Prof. Kazuyuki Nakamura gave him 31 ceramic fragments from Neolithic and early Medieval sites of the Amur Region and the Jewish Autonomous Region (Table 1) for microprobe analysis. The monuments were not chosen by chance (Fig. 1). The first group of ceramics (samples N 17 - 26) is Neolithic, related to the Gromatukhinskaya, Novopetrovskaya, and Osinoozerskaya cultures of the Western Amur region (Fig. 2), the problem of their origin is relevant [Radiocarbon Chronology..., 1998, p. 87; Alkin, 2000; Kuzmin, 2004; Nesterov, 2006, p. 297; Derevianko A. P., Kuzmin, Burr et al., 2004].
The multi-layered monument of Gromatukha is located at the mouth of the river of the same name in the Mazanovsky district of the Amur region. As a result of excavations, an area of about 500 m2 was investigated [Okladnikov, Derevyanko A. P., 1977; Derevyanko A. P., Kang Chang Hwa, Ban Moon Bae et al., 2004; Nesterov, Alkin, Petrov et al., 2005]. The upper layer 1 dates back to the time of the Osinoozersk Late Neolithic culture (4,0-3,7 thousand years AGO). Ceramic material from this layer is represented by fragments of vessels ornamented with taped rollers (parallel horizontal, connected to each other by short vertical and inclined ones), and a whole miniature vessel. Ceramics from layers 2 (13 - 6.7 thousand bp) and 3 (15.5-13 thousand BP) of the Gromatukha culture differ in the composition of molding masses and ornaments (Figs.
The Neolithic settlement of the Gromatukhin culture Sergeyevka is located above the city of Blagoveshchensk. There are two types of ceramics found here. The first one ha-
Table 1. Samples of ceramics from the Amur region monuments
Sample number |
Monument |
Year of excavation |
Code |
Sample collection point |
Neolithic Age |
||||
17 |
Gromatukha Settlement |
2004 |
283 |
Layer 1, dwelling |
18 |
The same thing |
" |
3758 |
Layer 2.2 |
19 |
" |
" |
347 |
Filling out a home |
20 |
" |
" |
917 |
Layer 1 |
21 |
" |
" |
899 |
" |
22 |
Sergeyevka settlement |
2005 |
b/n |
Settlement fees-4 |
23 |
Novopetrovka settlement III |
2003 |
117 |
Layer 2 |
24 |
The same thing |
" |
6101 |
" |
25 |
" |
" |
2000 |
" |
26 |
" |
" |
5883 |
" |
Nayfeld mohe Group |
||||
1 |
The Cap Burial Ground |
1983 |
1401 |
Could. 24 |
2 |
The same thing |
" |
1228 |
Could. 4 |
3 |
" |
" |
b/n |
Fees |
4 |
Kupriyanovo Burial Ground |
2002 |
19 |
" |
5 |
The same thing |
" |
26 |
" |
6 |
" |
" |
4 |
" |
7 |
" |
" |
127 |
" |
8 |
Nayfeld Burial Ground |
1960 |
387 |
Border 11 |
9 |
The same thing |
" |
404 |
Border 12 |
10 |
" |
" |
395 |
Border 10 |
11 |
" |
" |
403 |
Border 12 |
Trinity mohe Group |
||||
12 |
Troitsky burial ground |
There is no problem. |
b/n |
Inter-grave space |
13 |
The same thing |
1969 |
b/n |
The same thing |
14 |
" |
1970 |
351 |
Border 49 |
15 |
" |
" |
357 |
" |
16 |
" |
" |
789 |
Inter-grave space |
27 |
" |
2004 |
186 |
Page 234 |
28 |
" |
" |
694 |
Page 229 |
29 |
" |
" |
364 |
" |
30 |
" |
" |
80 |
Page 234 |
31 |
" |
" |
432 |
Page 229 |
It is characterized by a mesh ornament obtained as a result of knocking out the vessel with a mallet wrapped in coarse threads or grass; the second one is characterized by an admixture of grass in the dough [Okladnikov and Derevyanko A. P., 1977, pp. 106, 110] (Fig. 2, 6).
The Neolithic monument Novopetrovka III is located in the Konstantinovsky district of the Amur region, on the left bank of the Dunayka River, not far from its confluence with the Amur River (Derevyanko A. P., 1970, pp. 13-14). The latest data indicate that it is a single-cultural one, belongs to the Novopetrovian culture, and dates from 9-8,5 thousand years AGO (Nesterov, 2006, p. 295). Neolithic ceramics from the Novopetrovka III monument are represented both by individual fragments and the ruins of archaeologically intact flat-bottomed vessels of jar forms. According to the petrographic analysis, the ceramic dough contains a fine sand-like thinning agent. In addition to these ceramics met
Figure 1. Location of the considered monuments in the Far Eastern region of Asia. Amur region: 1-Gromatukha, 2-Sergeevka, 3 - Novopetrovka III, 4-Troitsky burial ground, 5-Shapka burial ground, 6-Kupriyanov, 7 - Naifeld burial ground; Sakhalin Island: 8-Starodubskoe, 9 - Okhotskoe, 10-Vavayaske, 11-Muravyovo, 12-Ozersky, 13-Belokamennoe, 14-Novotambovskoe, 15-Solovyevka, 16-Susuya; Yoshashi: 17-Menashidomari; Wakkanai: 18-Sakunai, 19-Onkoromanai, 20-Koe-toe; Rebun Island: 21-Kafukai-5, -6, 22-Motoshi; Rishiri Island: 23 - Oshidomari, 24-Matawakka.
2. Ceramics from the Neolithic settlements of Gromatukha (1-5), Sergeyevka (6), and Novopetrovka III (7-10). The sample number is indicated on the ceramic fragments.
3. Ceramics from the burial grounds of the Nayfeld group mohe Shapka (1 - 3), Kupriyanovo (4 - 7) and Nayfeld (8-11).
several fragments without ornaments with coarse-grained inclusions in the molding mass (Derevyanko A. P., Nesterov, Alkin et al., 2004) (Figs. 2, 7-10).
The second group of ceramics presented for analysis comes from the graves of the Nayfeld (Heishui) and Trinity (Sumo) mohe groups (pl. 1; Fig. 3,4). Mohe migrated to the Western Amur region from Manchuria not earlier than the end of the 7th-8th centuries (Chapka, Kupriyanovo, and Troitsky burial grounds) [Nesterov, 1998, p.104]. For comparison, fragments of ceramics from the Nayfeld burial ground (V - VII centuries) were analyzed. The Heishui mohe who left it were the autochthonous population of the Eastern Amur region. The interest of Japanese researchers in materials from the Amur River is related to the fact that approximately
4. Ceramics from the Troitsky burial ground of the Mohe group of the same name.
Mohe ceramics appeared in the medieval cultures of Sakhalin and Hokkaido in the eighth century.
The Shapka ground burial ground (late 7th-8th centuries) is located on the left bank of the Amur River between the Dim and Zavitaya rivers. Ceramics are a mass material here: at the Shapka burial ground, they were found in 36 out of 45 burials (Nesterov, 1990; Nesterov, Kudrin, and Komarova, 2003) (see Figs. 3, 1-3).
The Kupriyanov ground burial ground is located on the bank of the Amur River, on a small promontory terrace. During the survey of the monument, stucco ceramics of the Nayfeld mohe group were found (see Figures 3, 4-7).
The Troitsky burial ground (VIII - early XI c.) is located on the left bank of the Belaya River west of the village. Troitsky Cathedral. Over the years of excavations, more than 50 whole stucco vessels and approx. 3,000 fragments of such ceramics (Derevyanko E. I., 1977; Alkin and Feng Enxue, 2006) (see Fig.
The Nayfeld burial ground (V-VI centuries) is located in the village of the same name on the left bank of the Ikura River. During the excavations, 26 intact vessels were found here (eight of them outside the graves) and a large number of ceramic fragments (Derevyanko A. P., Bogdanov, Nesterov, 1999 )( see Figs. 3, 8-11).
For comparison, we used the results of a similar analysis of ceramics from the sites of the Okhotsk and Susui groups from the islands of Sakhalin (Russia), Hokkaido, Rebun and Rishiri (Japan) (see Fig. 1) [Amano, Ohba, 1984; Oya et al., 2006; Takeuchi, Nakamura, 2007].
The ceramics were examined on a JXA8900R series ERMA microanalyzer manufactured by Japan Electronics (Fig. 5). The sample was inserted into a small cylindrical lump of resin and ground until the seams between the ceramic part and the fixing resin were completely smoothed. Then, gold (Au) ions were deposited in a thin layer on the surface of the shard using an ion sprayer.
Figure 5. ERMA analyzer and scanned image.
Material surface analysis and image processing
When studying ceramics, the task was to determine the quantitative and qualitative content of the main chemical elements in the composition of molding masses: sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), potassium (K), calcium (Ca), titanium (Ti), iron (Fe). The results of the analysis were displayed on the monitor in eight colors (according to the number of elements), the saturation is proportional to the percentage of the element: black is the lowest, as it increases, it is followed by blue, green, red, and white corresponds to the largest percentage.
Electron beam bombardment was performed at 90,000 points on the sample surface. Thus, based on the obtained image, it is possible to determine with high accuracy the chemical elements, the size of sand grains, and calculate their percentages and amounts.
Takashi Takeuchi developed a computer - based method for quantifying sand grains and processing images using special software (Figure 6).The results of the analysis are recorded on the monitor screen first in a color image, and then converted to a gray scale at a speed of eight bits (0 - 255 tones). Using a micrometer and an image of the distribution of, for example, silicon (Si) on the section, the coordinates of the corners (edges) of the section of the sample were determined and its total area was calculated. Each of the obtained images (maps) of the distribution of elements was subjected to binary processing: threshold values of the diameter of sand grains were set and only they were visible on the screen. At the same time, places of thickening and gaps of the sample in the image were corrected by retouching and interpolation. Then the number of sand grains, the total area of their cross-sections and its percentage ratio to the total surface area of the sample were determined. Then, selecting the ten largest grain diameter values from all the data entered into the computer, the average diameter was calculated (see Figs. 5, 6).
Results
Feldspar is a solid solution of three extreme terms: albite (Na [AlSi3O8]), anorytite (Ca [Al2si2o8]), and kalishpate (K [AlSi3O8]). The first two make up a continuous series of plagioclases from basic (with a high Ca content) to acidic (with a low Ca content, high Na content, and higher SiO2 content), in which calishpate can be present in an amount of no more than 10%, since it usually forms an independent mineral characteristic of acidic igneous rocks. By-
Figure 6. Image processing scheme.
This ratio of silica, alkalis, and calcium makes it possible to distinguish between acidic (typical - granites) and medium (typical - diorite) rocks. and the main (typical - gabbro, basalt) rocks. It is also known that ultramafic rocks are characterized by a large amount of Mg and its predominance in rock-forming minerals over Fe at a very low silica content. Titanium is most abundant in the main rocks, where it binds with calcium to form a sphene. In effusive Ti is a part of pyroxene (titanavgite) and basaltic hornblende, which is also characteristic of more acidic effusives. In acidic rocks, it usually forms an accessory oxide - rutile. Based on such patterns of distribution of the main rock-forming components, it is possible to compare their ratios in the raw materials used in the molding masses of the studied ceramics. To do this, the data presented in Table. 2 and 3, the quantitative ratios of alkalis, silica, and calcium determined by probe analysis, as well as components characteristic of dark - colored minerals (Mg - Fe-Ti), were plotted on triangular diagrams, the analysis of which makes it possible to distinguish between groups of samples representing raw materials of different geographical locations, although there is a small data spread in each of them.
Table 2. Results of analysis of ceramics from monuments of the Amur region, %
Sample number |
To |
Sa |
SiO2 |
Na |
To |
Sa |
Md |
Ti |
Fe |
1 |
0,36 |
0,15 |
0,50 |
0,26 |
0,52 |
0,22 |
0,03 |
0,34 |
0,63 |
2 |
0,45 |
0,06 |
0,48 |
0,21 |
0,69 |
0,10 |
0,03 |
0,45 |
0,52 |
3 |
0,39 |
0,09 |
0,52 |
0,23 |
0,63 |
0,14 |
0,03 |
0,48 |
0,49 |
4 |
0,29 |
0,10 |
0,61 |
0,21 |
0,58 |
0,21 |
0,05 |
0,71 |
0,23 |
5 |
0,30 |
0,02 |
0,68 |
0,19 |
0,76 |
0,05 |
0,02 |
0,67 |
0,30 |
6 |
0,27 |
0,13 |
0,60 |
0,23 |
0,52 |
0,25 |
0,08 |
0,50 |
0,42 |
7 |
0,31 |
0,10 |
0,58 |
0,25 |
0,56 |
0,18 |
0,08 |
0,43 |
0,49 |
8 |
0,30 |
0,49 |
0,21 |
0,44 |
0,21 |
0,35 |
0,37 |
0,11 |
0,52 |
9 |
0,48 |
0,02 |
0,50 |
0,37 |
0,60 |
0,03 |
0,06 |
0,49 |
0,45 |
10 |
0,58 |
0,01 |
0,41 |
0,24 |
0,75 |
0,01 |
0,05 |
0,73 |
0,23 |
11 |
0,43 |
0,05 |
0,52 |
0,25 |
0,67 |
0,08 |
0,04 |
0,67 |
0,29 |
12 |
0,44 |
0,13 |
0,43 |
0,38 |
0,48 |
0,14 |
0,51 |
0,08 |
0,41 |
13 |
0,49 |
0,04 |
0,47 |
0,34 |
0,61 |
0,05 |
0,02 |
0,29 |
0,69 |
14 |
0,45 |
0,08 |
0,47 |
0,40 |
0,51 |
0,09 |
0,07 |
0,44 |
0,49 |
15 |
0,48 |
0,08 |
0,44 |
0,41 |
0,51 |
0,08 |
0,02 |
0,36 |
0,61 |
16 |
0,37 |
0,14 |
0,49 |
0,44 |
0,41 |
0,16 |
0,06 |
0,25 |
0,69 |
17 |
0,40 |
0,24 |
0,36 |
0,34 |
0,41 |
0,25 |
0,02 |
0,30 |
0,68 |
18 |
0,30 |
0,24 |
0,46 |
0,50 |
0,28 |
0,22 |
0,05 |
0,44 |
0,51 |
19 |
0,35 |
0,29 |
0,36 |
0,21 |
0,43 |
0,36 |
0,13 |
0,42 |
0,46 |
20 |
0,57 |
0,27 |
0,15 |
0,26 |
0,50 |
0,24 |
0,09 |
0,70 |
0,21 |
21 |
0,56 |
0,29 |
0,15 |
0,28 |
0,48 |
0,25 |
0,11 |
0,58 |
0,30 |
22 |
0,36 |
0,04 |
0,60 |
0,43 |
0,51 |
0,06 |
0,01 |
0,76 |
0,23 |
23 |
0,54 |
0,26 |
0,20 |
0,24 |
0,51 |
0,25 |
0,04 |
0,29 |
0,67 |
24 |
0,40 |
0,02 |
0,58 |
0,41 |
0,56 |
0,03 |
0,02 |
0,34 |
0,63 |
25 |
0,01 |
0,88 |
0,11 |
0,46 |
0,01 |
0,53 |
0,36 |
0,42 |
0,23 |
26 |
0,49 |
0,25 |
0,26 |
0,42 |
0,38 |
0,20 |
0,01 |
0,30 |
0,69 |
27 |
0,52 |
0,09 |
0,38 |
0,25 |
0,64 |
0,12 |
0,06 |
0,59 |
0,35 |
28 |
0,52 |
0,11 |
0,36 |
0,17 |
0,68 |
0,15 |
0,08 |
0,71 |
0,20 |
29 |
0,41 |
0,14 |
0,45 |
0,17 |
0,61 |
0,21 |
0,12 |
0,73 |
0,15 |
30 |
0,43 |
0,21 |
0,36 |
0,31 |
0,46 |
0,23 |
0,01 |
0,54 |
0,45 |
31 |
0,56 |
0,15 |
0,29 |
0,15 |
0,67 |
0,18 |
0,07 |
0,76 |
0,17 |
Table 3. Results of analysis of ceramic samples from Sakhalin Island and the Japanese Islands, %
Territory |
Type of ceramic |
Sample number |
To |
Sa |
Si02 |
Na |
To |
Sa |
Md |
"P |
Fe |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Sakhalin Island |
Okhotsk |
31 |
0,05 |
0,04 |
0,94 |
0,48 |
0,48 |
0,04 |
0,01 |
0,16 |
0,83 |
|
|
71 |
0,05 |
0,06 |
0,88 |
0,45 |
0,25 |
0,30 |
0,02 |
0,20 |
0,78 |
|
|
11 |
0,16 |
0,06 |
0,78 |
0,40 |
0,43 |
0,17 |
0,03 |
0,13 |
0,83 |
|
|
131 |
0,20 |
0,05 |
0,75 |
0,54 |
0,37 |
0,09 |
0,00 |
0,14 |
0,86 |
|
|
141 |
0,09 |
0,01 |
0,89 |
0,43 |
0,50 |
0,08 |
0,03 |
0,12 |
0,85 |
|
|
231 |
0,14 |
0,19 |
0,67 |
0,48 |
0,23 |
0,29 |
0,03 |
0,20 |
0,77 |
|
|
241 |
0,10 |
0,14 |
0,76 |
0,29 |
0,29 |
0,42 |
0,00 |
0,12 |
0,88 |
|
|
111 |
0,20 |
0,03 |
0,77 |
0,55 |
0,39 |
0,06 |
0,00 |
0,09 |
0,91 |
|
|
101 |
0,11 |
0,04 |
0,85 |
0,49 |
0,39 |
0,12 |
0,03 |
0,09 |
0,88 |
|
|
121 |
0,15 |
0,13 |
0,73 |
0,40 |
0,33 |
0,28 |
0,03 |
0,10 |
0,87 |
|
|
211 |
0,19 |
0,13 |
0,67 |
0,32 |
0,40 |
0,28 |
0,00 |
0,10 |
0,90 |
|
|
221 |
0,23 |
0,07 |
0,70 |
0,40 |
0,46 |
0,14 |
0,03 |
0,06 |
0,90 |
|
Susuisky |
21 |
0,04 |
0,16 |
0,80 |
0,35 |
0,14 |
0,51 |
0,00 |
0,23 |
0,77 |
|
|
22 |
0,03 |
0,13 |
0,85 |
0,52 |
0,08 |
0,40 |
0,08 |
0,10 |
0,81 |
|
|
212 |
0,10 |
0,06 |
0,84 |
0,55 |
0,29 |
0,16 |
0,13 |
0,10 |
0,78 |
Wakkanai City |
Okhotsk |
7 |
0,14 |
0,59 |
0,27 |
0,24 |
0,14 |
0,61 |
0,09 |
0,13 |
0,78 |
|
|
11 |
0,37 |
0,15 |
0,48 |
0,49 |
0,37 |
0,14 |
0,10 |
0,07 |
0,83 |
|
|
1 |
0,02 |
0,94 |
0,04 |
0,38 |
0,01 |
0,60 |
0,09 |
0,01 |
0,90 |
|
|
31 |
0,05 |
0,89 |
0,06 |
0,08 |
0,05 |
0,87 |
0,02 |
0,01 |
0,97 |
|
|
32 |
0,13 |
0,82 |
0,05 |
0,18 |
0,11 |
0,71 |
0,20 |
0,03 |
0,77 |
|
|
41 |
0,12 |
0,17 |
0,70 |
0,15 |
0,36 |
0,50 |
0,08 |
0,21 |
0,71 |
|
|
42 |
0,47 |
0,15 |
0,38 |
0,56 |
0,33 |
0,10 |
0,10 |
0,28 |
0,62 |
|
|
43 |
0,07 |
0,84 |
0,08 |
0,18 |
0,07 |
0,75 |
0,02 |
0,02 |
0,96 |
|
|
44 |
0,11 |
0,69 |
0,20 |
0,05 |
0,13 |
0,82 |
0,00 |
0,05 |
0,95 |
|
|
45 |
0,41 |
0,33 |
0,26 |
0,13 |
0,48 |
0,39 |
0,02 |
0,31 |
0,67 |
|
Susuisky |
8 |
0,19 |
0,53 |
0,27 |
0,21 |
0,21 |
0,58 |
0,12 |
0,15 |
0,73 |
|
|
9 |
0,09 |
0,69 |
0,22 |
0,39 |
0,07 |
0,54 |
0,24 |
0,05 |
0,71 |
|
|
10 |
0,35 |
0,22 |
0,42 |
0,45 |
0,34 |
0,21 |
0,22 |
0,09 |
0,68 |
|
|
12 |
0,28 |
0,62 |
0,11 |
0,41 |
0,18 |
0,41 |
0,06 |
0,15 |
0,79 |
|
|
13 |
0,33 |
0,61 |
0,07 |
0,20 |
0,28 |
0,52 |
0,09 |
0,04 |
0,87 |
|
|
14 |
0,42 |
0,27 |
0,31 |
0,50 |
0,30 |
0,19 |
0,00 |
0,10 |
0,90 |
|
|
15 |
0,27 |
0,58 |
0,15 |
0,31 |
0,22 |
0,47 |
0,08 |
0,14 |
0,78 |
|
|
1 |
0,59 |
0,32 |
0,09 |
0,45 |
0,36 |
0,19 |
0,28 |
0,16 |
0,56 |
|
|
2 |
0,40 |
0,48 |
0,12 |
0,40 |
0,27 |
0,33 |
0,09 |
0,22 |
0,69 |
|
|
3 |
0,26 |
0,55 |
0,19 |
0,39 |
0,20 |
0,41 |
0,15 |
0,03 |
0,82 |
|
|
4 |
0,13 |
0,04 |
0,84 |
0,61 |
0,30 |
0,08 |
0,00 |
0,14 |
0,86 |
Rishiri Island |
Okhotsk |
5 |
0,11 |
0,32 |
0,57 |
0,37 |
0,16 |
0,47 |
0,11 |
0,06 |
0,83 |
|
|
6 |
0,05 |
0,31 |
0,63 |
0,38 |
0,09 |
0,53 |
0,11 |
0,18 |
0,71 |
|
|
7 |
0,07 |
0,83 |
0,10 |
0,09 |
0,07 |
0,84 |
0,10 |
0,04 |
0,86 |
|
|
8 |
0,23 |
0,42 |
0,34 |
0,58 |
0,15 |
0,27 |
0,19 |
0,10 |
0,71 |
|
|
9 |
0,07 |
0,91 |
0,02 |
0,27 |
0,05 |
0,68 |
0,06 |
0,03 |
0,91 |
|
|
10 |
0,13 |
0,80 |
0,06 |
0,29 |
0,10 |
0,61 |
0,06 |
0,04 |
0,90 |
End of Table 3
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
|
13 |
0,04 |
0,95 |
0,01 |
0,16 |
0,03 |
0,81 |
0,19 |
0,06 |
0,75 |
|
|
15 |
0,07 |
0,91 |
0,02 |
0,30 |
0,05 |
0,65 |
0,09 |
0,03 |
0,88 |
|
|
RYR290 |
0,03 |
0,65 |
0,32 |
0,55 |
0,02 |
0,42 |
0,80 |
0,06 |
0,14 |
|
|
RYR194 |
0,15 |
0,33 |
0,52 |
0,66 |
0,11 |
0,24 |
0,26 |
0,00 |
0,73 |
|
|
RYR291 |
0,19 |
0,71 |
0,10 |
0,44 |
0,12 |
0,44 |
0,66 |
0,06 |
0,28 |
|
|
RYR292 |
0,12 |
0,75 |
0,13 |
0,44 |
0,08 |
0,49 |
0,30 |
0,06 |
0,64 |
|
Susuisky |
RYR230 |
0,30 |
0,37 |
0,33 |
0,40 |
0,27 |
0,33 |
0,14 |
0,12 |
0,74 |
|
|
RYR192 |
0,06 |
0,72 |
0,22 |
0,25 |
0,06 |
0,70 |
0,61 |
0,06 |
0,33 |
|
|
RYR333 |
0,65 |
0,24 |
0,11 |
0,64 |
0,26 |
0,10 |
0,15 |
0,11 |
0,74 |
|
|
RYR204 |
0,38 |
0,45 |
0,17 |
0,67 |
0,15 |
0,18 |
0,52 |
0,13 |
0,35 |
|
|
32 |
0,05 |
0,37 |
0,59 |
0,36 |
0,07 |
0,57 |
0,19 |
0,31 |
0,50 |
|
|
42 |
0,38 |
0,51 |
0,11 |
0,27 |
0,31 |
0,42 |
0,03 |
0,14 |
0,83 |
|
|
14 |
0,19 |
0,40 |
0,40 |
0,26 |
0,24 |
0,50 |
0,03 |
0,16 |
0,81 |
Rebun Island |
Okhotsk |
1 |
0,09 |
0,89 |
0,02 |
0,05 |
0,08 |
0,86 |
0,05 |
0,01 |
0,95 |
|
|
9 |
0,10 |
0,85 |
0,05 |
0,21 |
0,08 |
0,71 |
0,02 |
0,01 |
0,97 |
|
|
10 |
0,53 |
0,12 |
0,35 |
0,27 |
0,60 |
0,13 |
0,00 |
0,21 |
0,79 |
|
|
12 |
0,05 |
0,92 |
0,03 |
0,09 |
0,04 |
0,86 |
0,06 |
0,01 |
0,94 |
|
|
16 |
0,05 |
0,94 |
0,01 |
0,04 |
0,04 |
0,92 |
0,05 |
0,01 |
0,94 |
|
|
17 |
0,41 |
0,25 |
0,34 |
0,46 |
0,34 |
0,20 |
0,06 |
0,04 |
0,90 |
|
|
24 |
0,08 |
0,14 |
0,77 |
0,60 |
0,15 |
0,25 |
0,12 |
0,16 |
0,72 |
|
|
29 |
0,07 |
0,84 |
0,09 |
0,24 |
0,06 |
0,70 |
0,08 |
0,03 |
0,89 |
|
|
31 |
0,09 |
0,85 |
0,06 |
0,07 |
0,09 |
0,84 |
0,07 |
0,03 |
0,89 |
|
|
32 |
0,04 |
0,83 |
0,12 |
0,19 |
0,04 |
0,78 |
0,03 |
0,05 |
0,93 |
|
|
33 |
0,08 |
0,91 |
0,01 |
0,05 |
0,08 |
0,87 |
0,04 |
0,01 |
0,95 |
|
|
61 |
0,26 |
0,16 |
0,58 |
0,24 |
0,47 |
0,29 |
0,02 |
0,03 |
0,95 |
|
|
62 |
0,05 |
0,92 |
0,03 |
0,09 |
0,05 |
0,86 |
0,34 |
0,04 |
0,61 |
|
|
63 |
0,09 |
0,85 |
0,06 |
0,20 |
0,07 |
0,73 |
0,07 |
0,04 |
0,89 |
|
|
67 |
0,28 |
0,64 |
0,07 |
0,16 |
0,26 |
0,59 |
0,06 |
0,09 |
0,85 |
|
|
68 |
0,11 |
0,85 |
0,04 |
0,11 |
0,10 |
0,79 |
0,17 |
0,11 |
0,73 |
|
Susuisky |
614 |
0,46 |
0,20 |
0,34 |
0,31 |
0,48 |
0,21 |
0,02 |
0,29 |
0,69 |
|
|
615 |
0,40 |
0,20 |
0,40 |
0,12 |
0,59 |
0,29 |
0,00 |
0,38 |
0,62 |
Yoshashi City |
Okhotsk |
15 |
0,24 |
0,35 |
0,41 |
0,50 |
0,20 |
0,30 |
0,21 |
0,35 |
0,44 |
|
|
16 |
0,27 |
0,26 |
0,47 |
0,57 |
0,22 |
0,21 |
0,26 |
0,15 |
0,59 |
|
|
22 |
0,14 |
0,53 |
0,33 |
0,41 |
0,12 |
0,47 |
0,32 |
0,20 |
0,48 |
|
|
35 |
0,15 |
0,63 |
0,22 |
0,56 |
0,09 |
0,35 |
0,11 |
0,33 |
0,56 |
|
|
61 |
0,15 |
0,56 |
0,29 |
0,52 |
0,10 |
0,37 |
0,37 |
0,26 |
0,37 |
|
|
62 |
0,23 |
0,53 |
0,24 |
0,47 |
0,16 |
0,37 |
0,32 |
0,17 |
0,51 |
Priamurskaya ceramics. The low Ca content (Figs. 7, 8) suggests that medium and acidic rocks or sands formed due to their erosion were mainly used for molding masses. The high Ti content (Figure 9) may be due to the selective accumulation of heavy accessory titanium - containing minerals (rutile, sphene, and ilmenite) in the latter. The raw materials included in samples N 25 and 8 belong to the main rocks. In this case, additional study is required to build reliable conclusions.
Okhotsk group. Sakhalin ceramics. The excess silica content indicates that quartz was present in the material used,
7. The ratio of Ca, K, And Na. 1-Novopetrovka III; 2 - Sergeevka; 3-Gromatukha; 4 - Troitsky burial ground; 5 - Kupriyanovo burial ground; 6 - Shapka burial ground; 7 - Naifeld.
Fig. 8. The ratio of Ca, K, SiO2. Conditional obozn. see Fig. 7.
Figure 9. The ratio of Fe, Mg, and Ti. Conditional obozn. see Figure 7.
10. The ratio of Ca, K, And Na. Okhotsk type of ceramics. 1-Sakhalin Island; 2-Wakkanai City; 3-Rishiri Island; 4-Rebun Island; 5 - Yesashi City.
a small amount of potassium and sodium and the subordinate content of calcium (Figs. 10, 11) indicate the presence of kalishpate and acid plagioclase, i.e. the initial rock corresponded in composition to granites. The predominance of iron over magnesium in the same samples (Fig. 12) is also typical for acidic rocks, where biotite is the carrier of these components with just such a ratio. Susui group. No significant differences between the samples were found in the diagrams (Figs. 13-15). This may be due to the small number of samples analyzed, so the comparison in this case is incorrect.
Okhotsk group Ceramics of the city of Vakkanai. (see Fig. 10 - 12). The large variation of points in the diagrams and the significantly calcium composition of a certain group of samples with an average and low Ca content and a high - SiO2 content in the rest suggest the presence of two different sources, one of which was the main rocks enriched in calcium, the other - acidic and medium (poor Ca).
11. The ratio of Ca, K, and SiO2. Okhotsk type of ceramics. See Figure 10 for additional information.
12. Mg, Ti, Fe ratio. Okhotsk type of ceramics. See Figure 10 for additional information.
13. The ratio of Ca, K, and Na. Susui type of ceramics. See Figure 10 for additional information.
14. The ratio of Ca, K, and SiO2. Susu type of ceramics. See Figure 10 for additional information.
This is also confirmed by the distribution of points in the Mg-Ti-Fe diagram. Some of the samples have a high iron content, while the rest contain a lot of titanium. The latter may be characteristic of hornblende of effusive rocks. At the same time, the low Mg content common to all samples virtually excludes the participation of ultramafic rocks in the formation of the used raw materials.
The Susui group (see Figures 13-15). There is no distinction between the two groups. The attraction of the points to the Fe-vertex of the triangle (low Mg content) means that ultramafic rocks did not take a large part in the formation of raw materials.
Okhotsk Group Ceramics of Risiri Island. (see Fig. 10 - 12). Two groups of samples can be distinguished, and in both the initial rocks were not ultramafic. Dark-colored minerals are probably represented by hornblende or biotite.
The Susui group (see Figures 13-15). Two groups of samples are distinguished: those with a high Fe content and those with a low Fe content.
15. Mg, Ti, Fe ratio. Susui type of ceramics. See Figure 10 for additional information.
increased-Mg. The Na-K-Ca graph confirms the division into two groups: medium and more acidic rocks. For the former, we can assume the participation of hornblende and pyroxene.
Okhotsk Group Ceramics of Rebun Island (see Fig. 10 - 12). Analysis of the diagrams shows the presence of two groups of samples: medium-basic and more acidic, which indicates the participation of rocks of different composition in the formation of raw materials.
The Susui group (see Figures 13-15). In all likelihood, we can talk about medium breeds. The low Mg content highlights the absence of ultramafic rocks.
Okhotsk group Ceramics of the city of Yesashi (see Figs. 10-12). The distribution of points on all diagrams indicates the participation of medium rocks in the formation of raw materials. The composition of the samples most likely corresponds to diorite.
Conclusion
Among the samples presented for analysis, ceramics from the Amur region stand out quite clearly, where raw materials were formed on the basis of destruction of medium and acidic rocks with a low Ca content and high Ti content. However, this analysis does not allow us to characterize the individual features of molding masses of products from specific monuments, which could emphasize the use of different local raw materials for their manufacture in different historical periods.
For Sakhalin ceramics, the use of sand of eroded acidic rocks, which is based on quartz with an admixture of potassium feldspar and acid plagioclase, is most likely noted.
The identification of two sources for the formation of raw materials on almost all the studied monuments of Japan may be explained by regional features (the volcanic origin of a significant part of the rocks, the composition of which changes over time even in one volcano).
The first experience of using ERMA for the characterization of Far Eastern ceramics shows the possibility of using it to divide collections into groups based on the ratio of the main chemical components. However, the same experience shows that in the future it is necessary to adhere to the following provisions::
- the sample size should be statistically significant, allowing for correct comparisons;
- it is necessary to add A1 2 0 3 as one of the main components of raw materials to the number of determined basic chemical elements in the composition of feldspars;
- results should not reflect the percentage of elements, but their absolute values.
Acknowledgements
The team of authors is grateful to Ato Kakiuchi for translating the Japanese part of the article into Russian. The Russian authors are grateful to Professor Kato Hirofumi of Hokkaido University, Candidate of Historical Sciences E. V. Voitishek and V. A. Deryugin for their assistance in preparing the article.
List of literature
Alkin S. V. Dva problemy rannoy evolyutsii neoliticheskikh kul'tury Severo-Vostochnogo Kitai [Two problems of early evolution of Neolithic cultures of Northeastern China]: Thirtieth Scientific Conference, Moscow: Publishing House of the Company "Eastern Literature" of the Russian Academy of Sciences, 2000, pp. 6-14.
Alkin S. V., Feng Enxue. Joint Russian-Chinese research of the Troitsky burial ground in the Amur region in 2004. Vestn. NSU. Ser. History, philology. 2006, Vol. 5, Issue 4: Oriental Studies, pp. 132-134.
Belousova O. N., Mikhina V. V. General course of petrography. Moscow: Nedra Publ., 1972, 344 p.
Bobrinsky A. A. Goncharstvo Vostochnoi Evropy [Pottery of Eastern Europe], Moscow: Nauka Publ., 1978, 272 p.
Glushkov I. G. Keramika kak arkheologicheskiy istochnik [Ceramics as an archaeological source]. Novosibirsk: Publishing House of IAET SB RAS, 1996, 328 p. (in Russian)
Grazhdankina N. S. Methods of chemical and technological research of ancient ceramics //Archeology and Natural Sciences. Moscow: Nauka Publ., 1965, pp. 152-160.
Grebenshchikov A.V., Derevyanko E. I. Pottery of ancient tribes of the Amur region (beginning of the Early Iron age). Novosibirsk: IAET SB RAS Publ., 2001, 120 p. (in Russian)
Derevianko A. P. novopetrovskoe culture Medium of the Amur river. Novosibirsk: Nauka Publ., 1970, 204 p. (in Russian)
Derevyanko A. P., Bogdanov E. S., Nesterov S. P. Nayfeld burial Ground. Novosibirsk: IAET SB RAS Publ., 1999, 96 p. (in Russian)
Derevyanko A. P., Kang Chang Hwa, Bang Moon Bae, Ko Jae Won, Nesterov S. N., Kang Sun Seok, Kim Jong Chan, Kang Si Ne, Volkov P. V., Komarova N. A., Savelova A.V., Kudrin O. S., Min Ji Hyun. Problems of Archeology, Ethnography, and Anthropology of Siberia and Adjacent Territories: (Materials of the Annual Session of the Institute of Archeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, 2004), Novosibirsk: Izd. IAET SB RAS, 2004, vol. 10, part 1. - P. 82-86.
Derevyanko A. P., Nesterov S. P., Alkin S. V., Petrov G. V., Volkov P. V., Kudrin O. S., Kang Chang Hwa, Lee Hong Jung, Kim Kang Joo, Oh Yeon Suk, Lee Won Joon, Yang Na Ryo, Lee Hye Yeon. Materials of the archaeological study of the Novopetrovka-III monument on the Amur River in 2003. - Novosibirsk, Chechzhu: Fund of Culture and Art of Chechzhu, 2004. - 130 p.
Derevyanko E. I. Troitsky burial ground. Novosibirsk: Nauka Publ., 1977, 224 p. (in Russian)
Drebushchak V. A., Mylnikova L. N., Drebushchak T. A., Boldyrev V. V., Molodin V. N., Derevyanko E. I., Mylnikov V. P., Nartova A.V. Fiziko-khimicheskoe issledovanie keramiki (na primere izdelii perekhodnogo vremeni ot bronzovogo k zheleznom veku) [Physical and chemical research of ceramics (on the example of products of transition time from the Bronze to the Iron Age). Novosibirsk: Publishing House of the Siberian Branch of the Russian Academy of Sciences, 2006, 98 p. (Integration Projects of the Siberian Branch of the Russian Academy of Sciences, issue 6).
Zhushchikhovskaya I. S. Essays on the history of ancient pottery in the Russian Far East. Vladivostok: Far Eastern Branch of the Russian Academy of Sciences, 2004, 312 p.
Zhushchikhovskaya I. S., Zalishchak B. L. Petrographic method in the study of ancient ceramics (based on the Neolithic-medieval cultures of Primorye) // Methods of natural sciences in the archaeological study of ancient industries in the Far East of the USSR. Vladivostok: DVNC of the USSR Academy of Sciences, 1986, pp. 55-67.
Krug O. Yu. Primenenie petrograficheskikh metodov dlya issledovaniya silikatov (tekhnicheskikh materialov) v arkheologii [Application of petrographic methods for the study of silicates (technical materials) in archeology]. conf. - Moscow, 1963. - p. 42-43.
Krug O. Yu. Primenenie petrografii v arkheologii [Application of petrography in archeology].
Kuzmin Ya. V. Vozrozhdenie drevneyshikh keramiki v Vostochnoi Azii (geoarchaeologicheskii aspekt) [The emergence of the oldest ceramics in East Asia (geoarchaeological aspect)].
Lamina E. V., Lotova E. V., Dobretsov N. N. Mineralogy of ancient Baraba ceramics. Novosibirsk, IAET SB RAS Publ., 1995, 126 p. (in Russian)
ERMA analysis methodology: [electronic resource]. - Access mode: www.Komef.ra/cameca_epma.Shtml.
Mylnikova L. N. Pottery of Neolithic tribes of the Lower Amur (based on the materials of the Neolithic settlement of Condon-Pochta). Novosibirsk, IAET SB RAS Publ., 1999, 160 p. (in Russian)
Nesterov S. P. Ceramics of the Shapka burial ground // Ancient ceramics of Siberia: typology, technology, semantics. Novosibirsk: Nauka Publ., 1990, pp. 157-171.
Nesterov S. P. Peoples of the Amur Region in the Early Middle Ages. Novosibirsk, IAET SB RAS Publ., 1998, 184 p. (in Russian)
Nesterov S. P. Stratigraphy and chronology of Neolithic cultures of the Western Amur region // Modern problems of archeology in Russia. Novosibirsk: Izd-vo IAET SB RAS, 2006, vol. 1, pp. 295-298.
Nesterov S. P., Alkin S. V., Petrov V. G., Kang Chan Hwa, Orlova A. A., Kuzmin Ya. V., Imamura M., Sakamoto M. Problemy arkheologii, etnografii, antropologii Sibiri i sopredel'nykh territorii: Mat-ly Godovoy sessii Inta arkheologii i etnografii SB RAS 2005 g. [Problems of Archeology, Ethnography, and Anthropology of Siberia and adjacent Territories: Materials of the Annual Session of the Institute of Archeology and Ethnography SB RAS, 2005]. 168-172.
Archeology and sociocultural Anthropology of the Far East and adjacent territories: (Materials of the XI session of archaeologists and anthropologists of the Far East): The Third International Scientific Conference "Russia and China on the Far Eastern borders". Blagoveshchensk, 2003, pp. 286-293.
Okladnikov A. P., Derevyanko A. P. Gromatukhinskaya kul'tura [Gromatukhinskaya culture]. Novosibirsk: Nauka Publ., 1977, 288 p. (in Russian)
Kuzmin Ya. V., Alkin S. V., Ono A., Sato X., Sakaki T., Matsumoto Sh., Orimo K., Ito Sh. Radiocarbon chronology of ancient Stone Age cultures of North-East Asia, Vladivostok: Pacific Institute of Geography FEB RAS, 1998, 127 p.
Saiko, E. V., From the experience of applying the microscopic research method to the study of medieval Central Asian ceramics, Izv. AN TADZHSSR, 1960, No. 2, pp. 41-66.
Sayko E. V. K istorii goncharnogo kruga i razvitiya form keramiki [On the history of the potter's wheel and the development of ceramic forms]. Moscow: Nauka Publ., 1971, 172 p.
Sayko E. V. Tehnika i tekhnologiya keramicheskogo proizvodstva Srednoi Azii v istoricheskom razvitii [Technique and technology of ceramic production in Central Asia in historical development].
Saiko E. V., Zhushchikhovskaya N. S. Microscopy methods in the study of ancient ceramics: (Methodological aspects and practice) / Far Eastern Branch of the USSR Academy of Sciences. Institute of History, Archeology and Ethnography of the Peoples of the Far East. Vladivostok, 1990, 52 p. (in Russian)
Amano Т., Ohba T. Classification of Ceramics and Estimation of their Original Pocalities by Petrological Analysis // Bull, of the Institute for the Study of North Eurasian Cultures Hokkaido University. - Sapporo, 1984. - P. 125 - 163.
Derevianko A. P., Kuzmin Y. V., Burr G. S., Jull A. J. Т., Kim J. С AMS 14C Age of the Earliest Pottery from the Russian Far East: 1996 - 2002 Results // Nuclear Instruments and Methods in Physics Research. Section B: Beam Interaction with Materials and Atoms. - 2004. - Vol. 223/224. - P. 735 - 739.
Oya M., Yasuda N., Yokoyama K., Hirao Y. Separation of Sand Contained in Pottery and Methods for Its Chemical Analysis // Japanese archeology. - 2006. - Vol. 22. - P. 95 - 108.
Takeuchi Т., Nakamura К. Study of remain earthen wares from in the coastal area of Okhotsk cost and Hokkaido by using EPMA analysis image // The Report "Cultures in Japan" General research project for the Japanology. - Tokyo: International Japanology Institute Hosei University, 2007. - P. 271 - 300.
The article was submitted to the Editorial Board on 31.10.07.
New publications: |
Popular with readers: |
News from other countries: |
![]() |
Editorial Contacts |
About · News · For Advertisers |
![]() 2023-2025, ELIB.JP is a part of Libmonster, international library network (open map) Preserving the Japan heritage |